from fastai.torch_basics import *

from torch.utils.data.dataloader import _MultiProcessingDataLoaderIter,_SingleProcessDataLoaderIter,_DatasetKind
_loaders = (_MultiProcessingDataLoaderIter,_SingleProcessDataLoaderIter)
# from nbdev.showdoc import *
bs = 4
letters = list(string.ascii_lowercase)

DataLoader helpers

fastai includes a replacement for Pytorch's DataLoader which is largely API-compatible, and adds a lot of useful functionality and flexibility. Before we look at the class, there are a couple of helpers we'll need to define.

def _wif(worker_id):
    set_num_threads(1)
    info = get_worker_info()
    ds = info.dataset.d
    ds.num_workers,ds.offs = info.num_workers,info.id
    set_seed(info.seed)
    ds.wif()

class _FakeLoader:
    _IterableDataset_len_called,_auto_collation,collate_fn,drop_last = None,False,noops,False
    _index_sampler,generator,prefetch_factor  = Inf.count,None,2
    dataset_kind = _dataset_kind = _DatasetKind.Iterable
    def __init__(self, d, pin_memory, num_workers, timeout, persistent_workers):
        self.dataset,self.default,self.worker_init_fn = self,d,_wif
        store_attr('d,pin_memory,num_workers,timeout,persistent_workers')

    def __iter__(self): return iter(self.d.create_batches(self.d.sample()))

    @property
    def multiprocessing_context(self): return (None,multiprocessing)[self.num_workers>0]

    @contextmanager
    def no_multiproc(self):
        old_num_workers = self.num_workers
        try:
            self.num_workers = 0
            yield self.d
        finally: self.num_workers = old_num_workers

_collate_types = (ndarray, Tensor, typing.Mapping, str)
def fa_collate(t):
    "A replacement for PyTorch `default_collate` which maintains types and handles `Sequence`s"
    b = t[0]
    return (default_collate(t) if isinstance(b, _collate_types)
            else type(t[0])([fa_collate(s) for s in zip(*t)]) if isinstance(b, Sequence)
            else default_collate(t))
#e.g. x is int, y is tuple
t = [(1,(2,3)),(1,(2,3))]
test_eq(fa_collate(t), default_collate(t))
test_eq(L(fa_collate(t)).map(type), [Tensor,tuple])
t
fa_collate(t)
[(1, (2, 3)), (1, (2, 3))]
(tensor([1, 1]), (tensor([2, 2]), tensor([3, 3])))
t = [(1,(2,(3,4))),(1,(2,(3,4)))]
test_eq(fa_collate(t), default_collate(t))
test_eq(L(fa_collate(t)).map(type), [Tensor,tuple])
test_eq(L(fa_collate(t)[1]).map(type), [Tensor,tuple])
t
fa_collate(t)
fa_collate(t)[1]
len(fa_collate(t))
[(1, (2, 3)), (1, (2, 3))]
(tensor([1, 1]), (tensor([2, 2]), tensor([3, 3])))
(tensor([2, 2]), tensor([3, 3]))
2

assemble data into dataset with pytorch

default_collate??
t
fa_collate(t)
[(1, (2, (3, 4))), (1, (2, (3, 4)))]
(tensor([1, 1]), (tensor([2, 2]), (tensor([3, 3]), tensor([4, 4]))))
def fa_convert(t):
    "A replacement for PyTorch `default_convert` which maintains types and handles `Sequence`s"
    return (default_convert(t) if isinstance(t, _collate_types)
            else type(t)([fa_convert(s) for s in t]) if isinstance(t, Sequence)
            else default_convert(t))
t0 = array([1,2])
t = [t0,(t0,t0)]

test_eq(fa_convert(t), default_convert(t))
test_eq(L(fa_convert(t)).map(type), [Tensor,tuple])
t
fa_convert(t)
[array([1, 2]), (array([1, 2]), array([1, 2]))]
[tensor([1, 2]), (tensor([1, 2]), tensor([1, 2]))]
class SkipItemException(Exception):
    "Raised to notify `DataLoader` to skip an item"
    pass
@funcs_kwargs
class DataLoader(GetAttr):
    _noop_methods = 'wif before_iter after_item before_batch after_batch after_iter'.split()
    for o in _noop_methods: exec(f"def {o}(self, x=None, *args, **kwargs): return x")
    _methods = _noop_methods + 'create_batches create_item create_batch retain \
        get_idxs sample shuffle_fn do_batch create_batch'.split()
    _default = 'dataset'
    def __init__(self, dataset=None, bs=None, num_workers=0, pin_memory=False, timeout=0, batch_size=None,
                 shuffle=False, drop_last=False, indexed=None, n=None, device=None, persistent_workers=False, **kwargs):
        if batch_size is not None: bs = batch_size # PyTorch compatibility
        assert not (bs is None and drop_last)
        if indexed is None: indexed = dataset is not None and hasattr(dataset,'__getitem__')
        if n is None:
            try: n = len(dataset)
            except TypeError: pass
        store_attr('dataset,bs,shuffle,drop_last,indexed,n,pin_memory,timeout,device')
        self.rng,self.num_workers,self.offs = random.Random(random.randint(0,2**32-1)),1,0
        self.fake_l = _FakeLoader(self, pin_memory, num_workers, timeout, persistent_workers=persistent_workers)

    def __len__(self):
        if self.n is None: raise TypeError
        if self.bs is None: return self.n
        return self.n//self.bs + (0 if self.drop_last or self.n%self.bs==0 else 1)

    def get_idxs(self):
        idxs = Inf.count if self.indexed else Inf.nones
        if self.n is not None: idxs = list(itertools.islice(idxs, self.n))
        if self.shuffle: idxs = self.shuffle_fn(idxs)
        return idxs
    
    def sample(self): 
        return (b for i,b in enumerate(self.__idxs) if i//(self.bs or 1)%self.num_workers==self.offs)

    def __iter__(self):
        self.randomize()
        self.before_iter()
        self.__idxs=self.get_idxs() # called in context of main process (not workers/subprocesses)
        for b in _loaders[self.fake_l.num_workers==0](self.fake_l):
            if self.device is not None: b = to_device(b, self.device)
            yield self.after_batch(b)
        self.after_iter()
        if hasattr(self, 'it'): del(self.it)

    def create_batches(self, samps):
        self.it = iter(self.dataset) if self.dataset is not None else None
        res = filter(lambda o:o is not None, map(self.do_item, samps))
        yield from map(self.do_batch, self.chunkify(res))

    def new(self, dataset=None, cls=None, **kwargs):
        if dataset is None: dataset = self.dataset
        if cls is None: cls = type(self)
        cur_kwargs = dict(dataset=dataset, num_workers=self.fake_l.num_workers, pin_memory=self.pin_memory, timeout=self.timeout,
                          bs=self.bs, shuffle=self.shuffle, drop_last=self.drop_last, indexed=self.indexed, device=self.device)
        for n in self._methods:
            o = getattr(self, n)
            if not isinstance(o, MethodType): cur_kwargs[n] = o
        return cls(**merge(cur_kwargs, kwargs))

    @property
    def prebatched(self): return self.bs is None
    def do_item(self, s):
        try: return self.after_item(self.create_item(s))
        except SkipItemException: return None
    def chunkify(self, b): return b if self.prebatched else chunked(b, self.bs, self.drop_last)
    def shuffle_fn(self, idxs): return self.rng.sample(idxs, len(idxs))
    def randomize(self): self.rng = random.Random(self.rng.randint(0,2**32-1))
    def retain(self, res, b):  return retain_types(res, b[0] if is_listy(b) else b)
    def create_item(self, s):  return next(self.it) if s is None else self.dataset[s]
    def create_batch(self, b): return (fa_collate,fa_convert)[self.prebatched](b)
    def do_batch(self, b): return self.retain(self.create_batch(self.before_batch(b)), b)
    def to(self, device): self.device = device
    def one_batch(self):
        if self.n is not None and len(self)==0: raise ValueError(f'This DataLoader does not contain any batches')
        with self.fake_l.no_multiproc(): res = first(self)
        if hasattr(self, 'it'): delattr(self, 'it')
        return res

Arguments to DataLoader:

  • dataset: dataset from which to load the data. Can be either map-style or iterable-style dataset.
  • bs (int): how many samples per batch to load (if batch_size is provided then batch_size will override bs). If bs=None, then it is assumed that dataset.__getitem__ returns a batch.
  • num_workers (int): how many subprocesses to use for data loading. 0 means that the data will be loaded in the main process.
  • pin_memory (bool): If True, the data loader will copy Tensors into CUDA pinned memory before returning them.
  • timeout (float>0): the timeout value in seconds for collecting a batch from workers.
  • batch_size (int): It is only provided for PyTorch compatibility. Use bs.
  • shuffle (bool): If True, then data is shuffled every time dataloader is fully read/iterated.
  • drop_last (bool): If True, then the last incomplete batch is dropped.
  • indexed (bool): Set to False, if you are using iterable-style dataset. Otherwise it is set to True by default.
  • n (int): Defaults to len(dataset). If you are using iterable-style dataset, you can specify the size of batch using n.
  • device (torch.device): Defaults to default_device() which is CUDA by default. You can specify device as `torch.device('cpu').

Override item and use the default infinite sampler to get a stream of unknown length (stop() when you want to stop the stream).

class RandDL(DataLoader):
    # just think that create item defines how many batches you want to create
    def create_item(self, s):
        r = random.random()
        return r if r<0.95 else stop()

L(RandDL())
(#2) [0.7845764769109268,0.07663069024469027]
L(RandDL(bs=4, drop_last=True))
(#5) [tensor([0.4496, 0.1020, 0.7749, 0.2346], dtype=torch.float64),tensor([0.3137, 0.0669, 0.2633, 0.6447], dtype=torch.float64),tensor([0.1578, 0.7143, 0.7018, 0.3614], dtype=torch.float64),tensor([0.0818, 0.8804, 0.0260, 0.1141], dtype=torch.float64),tensor([0.8457, 0.4684, 0.6813, 0.5376], dtype=torch.float64)]
aa = L(torch.randn(3,2,2),torch.randn(1,2))
aa
# map(len) 得到每一个个体的len信息
aa.map(len)
(#2) [tensor([[[-0.1817,  0.8239],
         [-1.2745,  0.2690]],

        [[-2.4169, -0.0737],
         [-0.5183, -0.2426]],

        [[-0.5382, -0.8570],
         [-0.3183, -1.3729]]]),tensor([[ 0.3762, -0.1435]])]
(#2) [3,1]
# generate n samples, and each len of the sample is 4
L(RandDL(bs=4, drop_last=True)).map(len)
(#19) [4,4,4,4,4,4,4,4,4,4...]
dl = RandDL(bs=4, num_workers=4, drop_last=True)
dl
aa = L(dl)
aa
aa.map(len)
<__main__.RandDL at 0x7ff490c795e0>
(#6) [tensor([7.9808e-01, 3.3119e-04, 6.3444e-01, 4.4250e-01], dtype=torch.float64),tensor([0.3784, 0.7446, 0.4139, 0.4271], dtype=torch.float64),tensor([0.0310, 0.9253, 0.8902, 0.7117], dtype=torch.float64),tensor([0.6363, 0.0280, 0.4431, 0.4497], dtype=torch.float64),tensor([0.2198, 0.9301, 0.2775, 0.5392], dtype=torch.float64),tensor([0.9400, 0.6906, 0.3483, 0.1497], dtype=torch.float64)]
(#6) [4,4,4,4,4,4]
test_eq(dl.fake_l.num_workers, 4)
with dl.fake_l.no_multiproc(): 
    test_eq(dl.fake_l.num_workers, 0)
    L(dl).map(len)
test_eq(dl.fake_l.num_workers, 4)
(#3) [4,4,4]
def _rand_item(s):
    r = random.random()
    return r if r<0.95 else stop()

L(DataLoader(create_item=_rand_item))
(#19) [0.6349563676454735,0.7146332101602991,0.8141618453401647,0.4520649933251427,0.9361665561726571,0.6025762046797407,0.8542014056058742,0.1619398819056156,0.3453745719035911,0.21838379481215286...]

If you don't set bs, then dataset is assumed to provide an iterator or a __getitem__ that returns a batch.

ds1 = DataLoader(letters)
test_eq(L(ds1), letters)
test_eq(len(ds1), 26)

test_shuffled(L(DataLoader(letters, shuffle=True)), letters)

ds1 = DataLoader(letters, indexed=False)
test_eq(L(ds1), letters)
test_eq(len(ds1), 26)

t2 = L(tensor([0,1,2]),tensor([3,4,5]))
ds2 = DataLoader(t2)
test_eq_type(L(ds2), t2)

t3 = L(array([0,1,2]),array([3,4,5]))
ds3 = DataLoader(t3)
test_eq_type(L(ds3), t3.map(tensor))

ds4 = DataLoader(t3, create_batch=noop, after_iter=lambda: setattr(t3, 'f', 1))
test_eq_type(L(ds4), t3)
test_eq(t3.f, 1)

If you do set bs, then dataset is assumed to provide an iterator or a __getitem__ that returns a single item of a batch.

def twoepochs(d): return ' '.join(''.join(list(o)) for _ in range(2) for o in d)
ds1 = DataLoader(letters, bs=4, drop_last=True, num_workers=0)
test_eq(twoepochs(ds1), 'abcd efgh ijkl mnop qrst uvwx abcd efgh ijkl mnop qrst uvwx')

ds1 = DataLoader(letters,4,num_workers=2)
test_eq(twoepochs(ds1), 'abcd efgh ijkl mnop qrst uvwx yz abcd efgh ijkl mnop qrst uvwx yz')

ds1 = DataLoader(range(12), bs=4, num_workers=3)
test_eq_type(L(ds1), L(tensor([0,1,2,3]),tensor([4,5,6,7]),tensor([8,9,10,11])))

ds1 = DataLoader([str(i) for i in range(11)], bs=4, after_iter=lambda: setattr(t3, 'f', 2))
test_eq_type(L(ds1), L(['0','1','2','3'],['4','5','6','7'],['8','9','10']))
test_eq(t3.f, 2)

it = iter(DataLoader(map(noop,range(20)), bs=4, num_workers=1))
test_eq_type([next(it) for _ in range(3)], [tensor([0,1,2,3]),tensor([4,5,6,7]),tensor([8,9,10,11])])
def addone(s):
    s+=1
    return s
addone(6)
7
ds1 = DataLoader(range(12),bs = 4)
L(ds1)
ds1 = DataLoader(range(12),bs = 4, create_item=addone)
L(ds1)
ds1 = DataLoader(range(12),bs = 4, after_item=lambda o: o*2)
L(ds1)
ds1 = DataLoader(range(12),bs = 4, after_item=lambda o: o*2,create_item=addone)
L(ds1)
ds1 = DataLoader(range(12),bs = 4 ,create_item=addone, after_item=lambda i : i+2,after_batch=lambda o: o*3)
L(ds1)
# ds1 = DataLoader(range(12),bs = 4, before_batch=lambda o: o-1)
# L(ds1)
(#3) [tensor([0, 1, 2, 3]),tensor([4, 5, 6, 7]),tensor([ 8,  9, 10, 11])]
(#3) [tensor([1, 2, 3, 4]),tensor([5, 6, 7, 8]),tensor([ 9, 10, 11, 12])]
(#3) [tensor([0, 2, 4, 6]),tensor([ 8, 10, 12, 14]),tensor([16, 18, 20, 22])]
(#3) [tensor([2, 4, 6, 8]),tensor([10, 12, 14, 16]),tensor([18, 20, 22, 24])]
(#3) [tensor([ 9, 12, 15, 18]),tensor([21, 24, 27, 30]),tensor([33, 36, 39, 42])]
class SleepyDL(list):
    def __getitem__(self,i):
        time.sleep(random.random()/50)
        return super().__getitem__(i)

t = SleepyDL(letters)

%time test_eq(DataLoader(t, num_workers=0), letters)
%time test_eq(DataLoader(t, num_workers=2), letters)
%time test_eq(DataLoader(t, num_workers=4), letters)

dl = DataLoader(t, shuffle=True, num_workers=1)
test_shuffled(L(dl), letters)
test_shuffled(L(dl), L(dl))
CPU times: user 913 µs, sys: 5.14 ms, total: 6.05 ms
Wall time: 302 ms
CPU times: user 4.15 ms, sys: 30.2 ms, total: 34.4 ms
Wall time: 177 ms
CPU times: user 8.4 ms, sys: 35.2 ms, total: 43.6 ms
Wall time: 142 ms
class SleepyQueue():
    "Simulate a queue with varying latency"
    def __init__(self, q): self.q=q
    def __iter__(self):
        while True:
            time.sleep(random.random()/100)
            try: yield self.q.get_nowait()
            except queues.Empty: return

q = Queue()
for o in range(30): q.put(o)
it = SleepyQueue(q)

%time test_shuffled(L(DataLoader(it, num_workers=4)), range(30))
CPU times: user 9.43 ms, sys: 36.3 ms, total: 45.7 ms
Wall time: 118 ms
class A(TensorBase): pass

for nw in (0,2):
    t = A(tensor([1,2]))
    dl = DataLoader([t,t,t,t,t,t,t,t], bs=4, num_workers=nw)
    b = first(dl)
    len(b)
    print(b)
    b[0]
    test_eq(type(b), A)

    t = (A(tensor([1,2])),)
    dl = DataLoader([t,t,t,t,t,t,t,t], bs=4, num_workers=nw)
    b = first(dl)
    test_eq(type(b[0]), A)
4
A([[1, 2],
        [1, 2],
        [1, 2],
        [1, 2]])
A([1, 2])
4
A([[1, 2],
        [1, 2],
        [1, 2],
        [1, 2]])
A([1, 2])
list(DataLoader(list(range(50)),bs=32,shuffle=True,num_workers=3))
[tensor([30, 18, 29, 38, 43, 25, 23,  1,  0, 22, 13,  9, 27, 47, 16,  3, 15,  7,
         19, 32, 45, 42, 48, 41, 10, 11,  6, 14, 20, 31, 39, 26]),
 tensor([34, 35, 33, 24,  5, 28, 36,  4, 40, 49,  8, 21, 37, 17, 44,  2, 12, 46])]
class A(TensorBase): pass
t = A(tensor(1,2))

tdl = DataLoader([t,t,t,t,t,t,t,t], bs=4, num_workers=2, after_batch=to_device)
b = first(tdl)
test_eq(type(b), A)

# Unknown attributes are delegated to `dataset`
test_eq(tdl.pop(), tensor(1,2))

Override get_idxs to return the same index until consumption of the DL. This is intented to test consistent sampling behavior when num_workers>1.

class AdamantDL(DataLoader):
    def get_idxs(self):
        r=random.randint(0,self.n-1)
        return [r] * self.n

test_eq(torch.cat(tuple(AdamantDL((list(range(50))),bs=16,num_workers=4))).unique().numel(),1)