tensor unfold

pytorch unfold & fold

Using pytorch unfold and fold to construct the sliding window manually

import torch
import numpy as np
import matplotlib.pyplot as plt
from pathlib import Path
from PIL import Image
from skimage import io
import PIL
import os
import mimetypes
import torchvision.transforms as transforms
import glob
from skimage.io import imread
from natsort import natsorted
import re
import numba
from fastai2.vision.all import *
from torchvision.utils import save_image
from torchvision.transforms import ToPILImage
from pdb import set_trace

tensor.unfold

x = torch.arange(48).view(3, 4, 4)
x.shape
# x.view(8,8)
x

print('test')
x.unfold(0, 2, 1).shape
x.unfold(0, 2, 1)

print('exp1')
x.unfold(0, 3, 3).shape
x.unfold(0, 3, 3)

print('exp2')
x.unfold(0, 3, 3).unfold(1, 2, 2).shape
x.unfold(0, 3, 3).unfold(1, 2, 2)

print('exp3')
x.unfold(0, 3, 3).unfold(1, 2, 2).unfold(2, 2, 2).shape
x.unfold(0, 3, 3).unfold(1, 2, 2).unfold(2, 2, 2)
torch.Size([3, 4, 4])
tensor([[[ 0,  1,  2,  3],
         [ 4,  5,  6,  7],
         [ 8,  9, 10, 11],
         [12, 13, 14, 15]],

        [[16, 17, 18, 19],
         [20, 21, 22, 23],
         [24, 25, 26, 27],
         [28, 29, 30, 31]],

        [[32, 33, 34, 35],
         [36, 37, 38, 39],
         [40, 41, 42, 43],
         [44, 45, 46, 47]]])
test
torch.Size([2, 4, 4, 2])
tensor([[[[ 0, 16],
          [ 1, 17],
          [ 2, 18],
          [ 3, 19]],

         [[ 4, 20],
          [ 5, 21],
          [ 6, 22],
          [ 7, 23]],

         [[ 8, 24],
          [ 9, 25],
          [10, 26],
          [11, 27]],

         [[12, 28],
          [13, 29],
          [14, 30],
          [15, 31]]],


        [[[16, 32],
          [17, 33],
          [18, 34],
          [19, 35]],

         [[20, 36],
          [21, 37],
          [22, 38],
          [23, 39]],

         [[24, 40],
          [25, 41],
          [26, 42],
          [27, 43]],

         [[28, 44],
          [29, 45],
          [30, 46],
          [31, 47]]]])
exp1
torch.Size([1, 4, 4, 3])
tensor([[[[ 0, 16, 32],
          [ 1, 17, 33],
          [ 2, 18, 34],
          [ 3, 19, 35]],

         [[ 4, 20, 36],
          [ 5, 21, 37],
          [ 6, 22, 38],
          [ 7, 23, 39]],

         [[ 8, 24, 40],
          [ 9, 25, 41],
          [10, 26, 42],
          [11, 27, 43]],

         [[12, 28, 44],
          [13, 29, 45],
          [14, 30, 46],
          [15, 31, 47]]]])
exp2
torch.Size([1, 2, 4, 3, 2])
tensor([[[[[ 0,  4],
           [16, 20],
           [32, 36]],

          [[ 1,  5],
           [17, 21],
           [33, 37]],

          [[ 2,  6],
           [18, 22],
           [34, 38]],

          [[ 3,  7],
           [19, 23],
           [35, 39]]],


         [[[ 8, 12],
           [24, 28],
           [40, 44]],

          [[ 9, 13],
           [25, 29],
           [41, 45]],

          [[10, 14],
           [26, 30],
           [42, 46]],

          [[11, 15],
           [27, 31],
           [43, 47]]]]])
exp3
torch.Size([1, 2, 2, 3, 2, 2])
tensor([[[[[[ 0,  1],
            [ 4,  5]],

           [[16, 17],
            [20, 21]],

           [[32, 33],
            [36, 37]]],


          [[[ 2,  3],
            [ 6,  7]],

           [[18, 19],
            [22, 23]],

           [[34, 35],
            [38, 39]]]],



         [[[[ 8,  9],
            [12, 13]],

           [[24, 25],
            [28, 29]],

           [[40, 41],
            [44, 45]]],


          [[[10, 11],
            [14, 15]],

           [[26, 27],
            [30, 31]],

           [[42, 43],
            [46, 47]]]]]])

temp = torch.randint(0, 10, (3, 5176, 3793))
temp.shape
patches = temp.unfold(0, 3, 3)
patches.shape
test_eq(temp.unfold(0, 3, 3), temp.unfold(0, 3, 4))

patches = patches.unfold(1, 128, 128)
patches.shape

patches = patches.unfold(2, 128, 128)
# test_eq(temp.unfold(0,3,3),temp.unfold(0,3,66))
patches.shape
torch.Size([3, 5176, 3793])
torch.Size([1, 5176, 3793, 3])
torch.Size([1, 40, 3793, 3, 128])
torch.Size([1, 40, 29, 3, 128, 128])
math.floor((5176-128)/128)+1
40
math.floor((3793-128)/128)+1
29

tensor.unfold.rules

important
eg.
(a,b) = x.shape x.unfold(c,d,e) where d is the size and e is the step
from here we can see it:the shape value at dimension c after unfold method is that: eg. at a 's dimension:
**(math.floor(a-d)/e +1,b,d)**
BTW: the last one is to append the size value in the unfold method

torch.nn.unfold and fold

inp = torch.randn(1,3,10,12)
w = torch.randn(2,3,4,5)
inp_unf = torch.nn.functional.unfold(inp,(4,5))
inp_unf.shape
torch.Size([1, 60, 56])

experiment on an Image

# !wget https://eoimages.gsfc.nasa.gov/images/imagerecords/88000/88094/niobrara_photo_lrg.jpg
patch_size=512
stride=patch_size
pil2tensor = transforms.ToTensor()


file=Path('niobrara_photo_lrg.jpg')
filename=file.stem
im1 = Image.open(file)
print(im1.shape)
# im1.resize(5120,5120)

im1 = im1.resize((1500,1500),Image.BILINEAR)
im1

rgb_image = pil2tensor(im1)
rgb_image.shape
(1536, 2048)
torch.Size([3, 1500, 1500])
rgb_image.data.type()
'torch.FloatTensor'

tensor.unfold

patches = rgb_image.data.unfold(0, 3, 3).unfold(1, patch_size, stride).unfold(2, patch_size, stride)
print(patches.shape)
torch.Size([1, 2, 2, 3, 512, 512])
a = list(patches.shape)
a
torch.from_numpy(np.arange(0,a[1]))
patches[:,torch.from_numpy(np.arange(0,a[1])),:,:,:,:].shape
x = patches[:,torch.from_numpy(np.arange(0,a[1])),:,:,:,:].split(1, dim=1)
x = patches.split(1, dim=1)
# x = patches.split(1, dim=2)

len(x)
x[0].shape
x[1].shape
[1, 2, 2, 3, 512, 512]
tensor([0, 1])
torch.Size([1, 2, 2, 3, 512, 512])
2
torch.Size([1, 1, 2, 3, 512, 512])
torch.Size([1, 1, 2, 3, 512, 512])
to_pil = ToPILImage()
math.floor(1500/512)
2
6000/512
11.71875
x = patches[:,torch.from_numpy(np.arange(0,a[1])),:,:,:,:].split(1, dim=1)
for i in list(np.arange(a[1])):
    
    y =  x[i][:,:,torch.from_numpy(np.arange(0,a[2])),:,:,:].split(1, dim=2)
    for j in list(np.arange(a[2])):
        img = to_pil(y[j].squeeze(0).squeeze(0).squeeze(0))
        img
#         set_trace()
#         save_image(y[j], filename+'-'+str(i)+'-'+str(j)+'.png')

nn.functional.unfold and fold to extract and reconstruct

def split_tensor(tensor, tile_size=256):
    mask = torch.ones_like(tensor)
    # use torch.nn.Unfold
    stride  = tile_size//2
    unfold  = nn.Unfold(kernel_size=(tile_size, tile_size), stride=stride)
    # Apply to mask and original image
    mask_p  = unfold(mask)
    patches = unfold(tensor)
	
    patches = patches.reshape(3, tile_size, tile_size, -1).permute(3, 0, 1, 2)
    if tensor.is_cuda:
        patches_base = torch.zeros(patches.size(), device=tensor.get_device())
    else: 
        patches_base = torch.zeros(patches.size())
	
    tiles = []
    for t in range(patches.size(0)):
         tiles.append(patches[[t], :, :, :])
    return tiles, mask_p, patches_base, (tensor.size(2), tensor.size(3))

def rebuild_tensor(tensor_list, mask_t, base_tensor, t_size, tile_size=256):
    stride  = tile_size//2  
    # base_tensor here is used as a container

    for t, tile in enumerate(tensor_list):
         print(tile.size())
         base_tensor[[t], :, :] = tile  
	 
    base_tensor = base_tensor.permute(1, 2, 3, 0).reshape(3*tile_size*tile_size, base_tensor.size(0)).unsqueeze(0)
    fold = nn.Fold(output_size=(t_size[0], t_size[1]), kernel_size=(tile_size, tile_size), stride=stride)
    # https://discuss.pytorch.org/t/seemlessly-blending-tensors-together/65235/2?u=bowenroom
    output_tensor = fold(base_tensor)/fold(mask_t)
    # output_tensor = fold(base_tensor)
    return output_tensor
# %%time
test_image = 'test_image.jpg'
image_size=1024
Loader = transforms.Compose([transforms.Resize(image_size), transforms.ToTensor()])
input_tensor = Loader(Image.open(file).convert('RGB')).unsqueeze(0).cuda()


# Split image into overlapping tiles
tile_tensors, mask_t, base_tensor, t_size = split_tensor(input_tensor, 660)


# Put tiles back together
output_tensor = rebuild_tensor(tile_tensors, mask_t, base_tensor, t_size, 660)

# Save Output
Image2PIL = transforms.ToPILImage()
print(f'the whole length of the patches is {len(tile_tensors)}')
# show small patches
for i in range(len(tile_tensors)):
    print(f'the current is {i}')
    Image2PIL(tile_tensors[i].cpu().squeeze(0))
print('the reconstruct image')
Image2PIL(output_tensor.cpu().squeeze(0))
# Image2PIL(output_tensor.cpu().squeeze(0)).save('output_image.png')
torch.Size([1, 3, 660, 660])
torch.Size([1, 3, 660, 660])
torch.Size([1, 3, 660, 660])
torch.Size([1, 3, 660, 660])
torch.Size([1, 3, 660, 660])
torch.Size([1, 3, 660, 660])
the whole length of the patches is 6
the current is 0
the current is 1
the current is 2
the current is 3
the current is 4
the current is 5
the reconstruct image
6000/512
11.71875

fastai2.PILImage and PIL.image

len(tile_tensors)
tile_tensors[0].size()
6
torch.Size([1, 3, 660, 660])
tile_tensors[0].squeeze(0)
tensor([[[1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000],
         [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000],
         [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000],
         ...,
         [0.5647, 0.5451, 0.4902,  ..., 0.7490, 0.7569, 0.7412],
         [0.5490, 0.5529, 0.4863,  ..., 0.7412, 0.7490, 0.7412],
         [0.5608, 0.5686, 0.5059,  ..., 0.7412, 0.7569, 0.7529]],

        [[1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000],
         [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000],
         [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000],
         ...,
         [0.6667, 0.6549, 0.6196,  ..., 0.7647, 0.7686, 0.7490],
         [0.6431, 0.6510, 0.6039,  ..., 0.7451, 0.7529, 0.7412],
         [0.6471, 0.6549, 0.6078,  ..., 0.7333, 0.7451, 0.7412]],

        [[1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000],
         [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000],
         [1.0000, 1.0000, 1.0000,  ..., 1.0000, 1.0000, 1.0000],
         ...,
         [0.3765, 0.3647, 0.3176,  ..., 0.8000, 0.8039, 0.7882],
         [0.3412, 0.3569, 0.3098,  ..., 0.7843, 0.7882, 0.7804],
         [0.3373, 0.3608, 0.3255,  ..., 0.7765, 0.7882, 0.7843]]],
       device='cuda:0')
temp = PILImage(Image2PIL(tile_tensors[0].cpu().squeeze(0)))
temp
temp.shape
(660, 660)